
CDF/MEMO/CDF/CDFR/10255
Draft 1.0

August 17, 2010

Building the Basic Structure For An Stntuple
Analysis (Version 2)

Jason Nett

Texas A&M University

2 CONTENTS

Abstract

The motivation for this note grew out of my desire for it to have already
existed as I setup my own Stntuple analysis modules. Unlike the pen and paper
study of physics, much of the structure of computing must simply be provided.
The answer to a problem is often not an idea that can be logically deduced;
rather, it’s a result of an aribrary choice made by a person to ’make it work.’
As such, there is a need for a comprehensive source of information that allows
the novice to produce a working structure for an Stntuple analysis module. I
provide here step-by-step instructions to start from scratch and end with an
empty, though functioning, Stntuple module. We will see as we work through
the minutia that doing so requires many seemingly arbitrary steps indeed.

Following this document step-by-step, the reader should be able to arrive at a
skeleton Stntuple analysis including an user-built ntuple, a module that fills this
ntuple with information from an Stntuple dataset, and an analysis module that
is capable of processing the information stored in the ntuple. All that is required
to begin is a home directory, access to the CDF software framework, and proper
access to Stntuple data files. Access to the Stntuple files may require a kerberos
for yourusername@FNAL.GOV.

Finally, I offer a special thanks to Pasha Murat for answering a few of my
questions via correspondence while writing this document and to everyone that
contributed to the writing of the CDF H → WW group’s Diboson framework.
Most of what I learned and put in here came from that collection of code.

Contents

1 Disclaimer 3

2 The First Compilation 4
2.1 Creating a New Release and its Directories 4
2.2 The Source Code and Header Files . 5

2.2.1 MyModule::BeginJob() . 7

2.2.2 MyModule::BeginRun() . 8
2.3 Symbolic Linking and the Header . 9
2.4 MyModule linkdef.h . 9
2.5 The GNUmakefile files . 10

2.6 The empty .refresh file . 11
2.7 Compile . 12

3 The First Run 12
3.1 rootlogon.C and Loading MyAnalysis’ shared library 12

3.2 Retriving a set of test data from SAM/Accessing SAM data directly . . 14
3.3 The Driver Script . 15
3.4 Run . 16

3

4 The First Tasks 18

4.1 ClassDef and ClassImp: Making Your Class a ROOT Class 18

4.2 Declaring Static Data Members . 18

4.3 Access The Data Blocks . 19

4.4 Make and Fill a Histogram . 22

4.5 Create a Basic Ntuple . 25

4.6 Create a Better Ntuple For A More Complex Analysis 30

4.6.1 Storing an Object to an Ntuple 32

4.6.2 Storing an Array of Objects in an Ntuple 35

4.6.3 Building an Analyzer Module for an Ntuple 38

5 Common errors 43

5.1 Changing Code within Stntuple/loop 43

5.2 The Missing Separator Error . 43

5.3 The Problem With Loading libJetUser forRoot.so 44

1 Disclaimer

The approach I describe below should in no way be interpreted as being the only

method to produce an functioning Stntuple analysis module. Also, if any mistakes
are found and need correcting, if any necessary information is missing, if someone
wants to contribute further exposition explaining a topic, or if someone comes across
(and solves) a nasty error that others might also impale themselves on, please email
Jason Nett at jnett80@fnal.gov. Nevertheless, I do not mearly attempt to describe
the necessary steps in a disjointed manner; rather, the following should at least be
sufficient to produce a function, compiling, running module inheriting from
TStnModule, an ntuple module that the previous module fills with Stntuple data, and an
analysis module capable of retrieving information from the ntuple and further processing it
in some way. Every necessary command is given explicitly. I tried to include comments in
the given code that explain what most pieces do, but fully explaining the purpose of every
single line would have made this document far longer than it already is. As such, some
more work may have to be done to track down the purpose of some lines.

Comments on v2: Since the first time I wrote this document, Fermilab has upgraded the
Scientific Linux operating systems to version 5. Fermilab will also be administering only to
v5. Correspondingly, the CDF software releases have updated versions consistent with
Scientific Linux 5. The CDF software release 6.1.4 that was used in the first version of this
paper now has an upgraded version called 6.1.4.m. Similarly, there is also a CDF software
6.1.6.m that is consistent with Scientific Linux 5. While the older versions still exist as of
this writing and are operational, I am updating this document to use CDF software 6.1.6.m.

4 2 THE FIRST COMPILATION

2 The First Compilation

2.1 Creating a New Release and its Directories

[NOTE: DO NOT ATTEMPT TO COMPILE UNTIL THE “COMPILE”
SECTION. YOU WILL RECEIVE ERRORS UNTIL ALL PREVIOUS
SECTIONS ARE COMPLETED.]

We begin as we do for so many tasks, breath life into a test release.

source ~cdfsoft/cdf2.cshrc

setup cdfsoft2 6.1.6.m

newrel -t 6.1.6.m stn_example_6.1.6.m

cd stn_example_6.1.6.m

Note that the first line is for working in csh, but if working in bash that
line should be source cdfsoft/cdf2.shrc. Also, not all computers may
have all CDF software releases available.

Next, we remove the environmental variable USESHLIBS 1.

unsetenv USESHLIBS

We also require a copy of the Stntuple package. This usually takes at least 10-20 minutes to
compile.

addpkg Stntuple dev_243

gmake Stntuple.nobin USESHLIBS=1

Many new folders just appeared after compiling Stntuple. Most of these can be ignored for
now. The rootlogon.C file is important for loading the shared libraries to ROOT and
addressed below.

If we cd include we see that several symbolic links have appeared where before there were
none. We will be adding one of our own by hand later.

I’ve found that if working in tsch, as opposed to bash shell, the USESHLIBS=1 add-on is
critically important during compilation of one of the branches of Stntuple or the module we
will be creating shortly. Without it, the necessary shared libraries that are loaded into ROOT

are not available in an updated form. When working in bash shell, it is not necessary.

Now we need to create the folders in which our own analysis will be conducted. There is a
conventional method for how to construct these directories and what to put in them that is
not necessarily critical for functionality, but I will follow the convention anyways. First,
create a folder for our personal analysis and enter it

mkdir MyAnalysis

cd MyAnalysis

Second, create the following directories:

1http://www.opengroup.org/onlinepubs/009695399/functions/unsetenv.html

2.2 The Source Code and Header Files 5

mkdir MyAnalysis

mkdir src

mkdir dict

mkdir drivers

mkdir data

MyAnalysis will contain the header file of the module MyModule that we will create shortly.
src will contain the source code of MyModule. dict will contain a file called
MyModule linkdef.h that is critical for compilation. drivers will contain the ROOT script
that controls the execution of our module. data is the directory where we will put a sample
Stntuple data set that our analysis module will access. All these are explored in further
detail below.

2.2 The Source Code and Header Files

Let’s enter the directory \ stn example 6.1.6.m \ MyAnalysis \ src \ . Create a file to
contain our source code:

emacs MyModule.cc &

Similarly, in the directory \ stn example \ MyAnalysis \ MyAnalysis \ create the header
file for our new module:

emacs MyModule.hh &

SIDE NOTE: The Scientific Linux version 5 operating system team no longer
support use of xemacs at this time. So this note will refer to emacs when a text
editor is needed. However, any text editor (nano, gedit, etc.) is sufficient.
Let’s begin filling in some basic structure for the header file (beware the dangers of blindy
copy and pasting; differences can creep in):

#if !defined (__CINT__) || defined (__MAKECINT__)

#include "TH1.h"

#include "TH2.h"

#include "TProfile.h"

#include <TPostScript.h>

#include <Stntuple/loop/TStnModule.hh>

#include <Stntuple/obj/TCalDataBlock.hh>

#include <Stntuple/obj/TStnTriggerBlock.hh>

#include <Stntuple/obj/TStnPhotonBlock.hh>

#include <Stntuple/obj/TStnJetBlock.hh>

#include "Stntuple/obj/TStnJetProbBlock.hh"

#include <Stntuple/obj/TStnElectronBlock.hh>

#include <Stntuple/obj/TStnMuonBlock.hh>

#include <Stntuple/obj/TStnMetBlock.hh>

#include <Stntuple/obj/TStnDBManager.hh>

#include <Stntuple/obj/TStnRunSummary.hh>

#include <Stntuple/obj/TStnTrackBlock.hh>

#include <Stntuple/obj/TStnVertexBlock.hh>

#include <Stntuple/obj/TCesDataBlock.hh>

#include <Stntuple/obj/TStnClusterBlock.hh>

#include <Stntuple/obj/TDcasDataBlock.hh>

#include <Stntuple/obj/TPhoenixElectronBlock.hh>

#include <Stntuple/obj/TGenpBlock.hh>

#include <Stntuple/obj/TSvtDataBlock.hh>

6 2 THE FIRST COMPILATION

#include <Stntuple/alg/TStntuple.hh>

#include <Stntuple/obj/TStnSecVtxTagBlock.hh>

#include <Stntuple/obj/TStnTriggerTable.hh>

#include <Stntuple/obj/TStnEvent.hh>

#endif

#include <map>

#include <set>

#include <vector>

#include <iostream>

using std::map;

using std::set;

using std::vector;

using std::cout;

using std::endl;

class MyModule: public TStnModule

{

public:

string mode;

~MyModule(){}

MyModule();

// Re-implement the TStnModule methods

int BeginJob();

int BeginRun();

int Event(int ientry);

int EndJob();

protected:

};

In the source code write:

#include "TF1.h"

#include "TCanvas.h"

#include "TLine.h"

#include "TText.h"

#include "TMath.h"

#include "TStyle.h"

#include "TChain.h"

#include "TRandom.h"

#include <set>

#include <iostream>

using namespace std;

// if the following line doesn’t work, see the symbolic link section

#include "MyAnalysis/MyModule.hh"

#include "Stntuple/obj/TStnTriggerBlock.hh"

#include "Stntuple/obj/TStnHeaderBlock.hh"

#include "Stntuple/obj/TStnTrackBlock.hh"

#include "Stntuple/obj/TStnPhotonBlock.hh"

#include "Stntuple/obj/TStnElectronBlock.hh"

#include "Stntuple/obj/TStnJetBlock.hh"

#include "Stntuple/obj/TStnMuonBlock.hh"

#include "Stntuple/obj/TStnMetBlock.hh"

#include "Stntuple/obj/TStnRunSummary.hh"

#include "Stntuple/loop/TStnAna.hh"

#include "Stntuple/loop/TStnInputModule.hh"

#include <Stntuple/obj/TStnNode.hh>

//Constructor

MyModule::MyModule():TStnModule("MyModule","MyModule"){}

int MyModule::Event(int ientry)

2.2 The Source Code and Header Files 7

{

std::cout << "MyModule::Event" << std::endl;

return 0;

}

int MyModule::BeginJob()

{

return 0;

}

int MyModule::BeginRun()

{

return 0;

}

int MyModule::EndJob()

{

return 0;

}

The first thing to note is that this module inherits from TStnModule. So if we go to the top
directory of this release and open TStnModule.cc

xemacs Stntuple/loop/TStnModule.cc &

we find empty functions by the same name as above. These in turn are called by TStnAna,
which controls the event loop. Notice that each of these functions has a return 0; which
must be the last line of the function. If execution does not reach this line, then TStnAna

knows that something has gone wrong and will print an error. See the section for the driver
script for more details.
Any Stntuple analysis module will require the ability to access data from the Stntuple data
blocks and will utilize the usual beam position corrections for each run of data input. The
following two subsections describe this setup.

2.2.1 MyModule::BeginJob()

In the public: section of the header file write:

// StnTuple Data blocks

TStnElectronBlock* fElectronBlock;

TStnMuonBlock* fMuonBlock;

TStnMetBlock* fMetBlock;

TStnJetBlock* fJetBlock;

TStnJetProbBlock* fJetProbBlock;

TCalDataBlock* fCalData;

TStnTrackBlock* fTrackBlock;

TCesDataBlock* fCesDataBlock;

TStnClusterBlock* fClusterBlock;

TStnPhotonBlock* fPhotonBlock;

TStnVertexBlock* fVertexBlock;

TDcasDataBlock* fDcasDataBlock;

TPhoenixElectronBlock* fPhoenixElectronBlock;

TStnTrackBlock* fPhoenixSeedTrackBlock;

TStnTrackBlock* fPhoenixSiTrackBlock;

TGenpBlock* fGenpBlock;

TStnTriggerBlock* fTriggerBlock;

TSvtDataBlock* fSvtDataBlock;

TStnTriggerTable* ftrigtable;

TStnSecVtxTagBlock* fSecVtxTag;

TStnRunSummary* runSummary;

8 2 THE FIRST COMPILATION

Within MyModule::BeginJob of the source code write:

TString name = GetName();

if (name.Contains("data") || name.Contains("DATA") || name.Contains("Data")) mode ="data";

cout << " name = " << name << endl;

cout << " mode = " << mode << endl;

fElectronBlock = (TStnElectronBlock*) RegisterDataBlock("ElectronBlock","TStnElectronBlock");

fMetBlock = (TStnMetBlock*) RegisterDataBlock("MetBlock","TStnMetBlock");

fMuonBlock = (TStnMuonBlock*) RegisterDataBlock("MuonBlock","TStnMuonBlock");

fCalData = (TCalDataBlock*) RegisterDataBlock("CalDataBlock","TCalDataBlock");

fJetBlock = (TStnJetBlock*) RegisterDataBlock("JetBlock","TStnJetBlock");

fJetProbBlock = (TStnJetProbBlock*) RegisterDataBlock("JetProbBlock","TStnJetProbBlock");

fDcasDataBlock = (TDcasDataBlock*) RegisterDataBlock("DcasDataBlock","TDcasDataBlock");

fClusterBlock = (TStnClusterBlock*) RegisterDataBlock("ClusterBlock","TStnClusterBlock");

fCesDataBlock = (TCesDataBlock*) RegisterDataBlock("CesDataBlock","TCesDataBlock");

fPhotonBlock = (TStnPhotonBlock*) RegisterDataBlock("PhotonBlock","TStnPhotonBlock");

fTrackBlock = (TStnTrackBlock*) RegisterDataBlock("TrackBlock","TStnTrackBlock");

fVertexBlock = (TStnVertexBlock*) RegisterDataBlock("ZVertexBlock","TStnVertexBlock");

if (mode=="data")

fTriggerBlock = (TStnTriggerBlock*) RegisterDataBlock("TriggerBlock", "TStnTriggerBlock");

else

fTriggerBlock = (TStnTriggerBlock*) RegisterDataBlock("TrigSimBlock", "TStnTriggerBlock");

fPhoenixSiTrackBlock = (TStnTrackBlock*) RegisterDataBlock("PROD@PhoenixSI_Tracking","TStnTrackBlock");

fPhoenixElectronBlock = (TPhoenixElectronBlock*) RegisterDataBlock("Phoenix_Electrons","TPhoenixElectronBlock");

fPhoenixSeedTrackBlock = (TStnTrackBlock*) RegisterDataBlock("PROD@Phoenix_Tracking","TStnTrackBlock");

fGenpBlock = (TGenpBlock*) RegisterDataBlock("GenpBlock","TGenpBlock");

fSvtDataBlock = (TSvtDataBlock*) RegisterDataBlock("SvtDataBlock","TSvtDataBlock");

fSecVtxTag = (TStnSecVtxTagBlock*) RegisterDataBlock("SecVtxTagBlock","TStnSecVtxTagBlock");

// check for datablocks that are null

TObjArray* nodes = GetAna()->GetEvent()->GetListOfNodes();

for (int i=0; i< nodes->GetEntries(); i++)

{

TStnNode* n = (TStnNode*) nodes->At(i);

cout << (n->GetBranch()->GetName()) << " at " << n->GetDataBlock() << endl;

if (!n->GetDataBlock())

{

cout << " Error : Did not find Branch " << n->GetBranch()->GetName() << endl;

exit(0);

}

}

return 0;

Of course, return 0; should only appear once in each function. We have just initialized
and instantiated a variety of data blocks for the various kinds of objects one would like to
study. For instance, the TStnJetBlock will contain information about jets in an events,
while TStnPhotonBlock will contain photon info, and so on.

2.2.2 MyModule::BeginRun()

In practice, the beamline is constantly shifting within some small area of a plane
perpendicular to it. This exact location of the beamline shifts from one run to the next as
well as within the execution of a run. As such, the timing information of particles emitted
from the collisions in the beam require precise knowledge of where the beam is. Taking this
into account is the purpose of the following code. In the public section of the header file,
write:

2.3 Symbolic Linking and the Header 9

std::set<std::string> inputfiles;

TStnBeamPos* beampos_cot;

TStnBeamPos* beampos_svx;

Within MyModule::BeginRun of the source code, write:

// Get the trigger table for this run.

TStnDBManager* dbm = TStnDBManager::Instance();

ftrigtable = (TStnTriggerTable*) dbm->GetTable("TriggerTable");

beampos_cot = (TStnBeamPos*) dbm->GetTable("CotBeamPos");

beampos_svx = (TStnBeamPos*) dbm->GetTable("SvxBeamPos");

// maintain a list of all input files

TChain* c = GetAna()->GetInputModule()->GetChain();

inputfiles.insert(string(c->GetFile()->GetName()));

TStnRunSummary* rs = (TStnRunSummary*) dbm->GetTable("RunSummary");

return 0;

2.3 Symbolic Linking and the Header

Recall the line

#include "MyAnalysis/MyModule.hh"

in the source code. It would not work without the following.
Go back to the top directory of the release and enter the include folder. Once there, type

ln -s ~myhomedirectory/stn_example_6.1.6.m/MyAnalysis/MyAnalysis MyAnalysis

to create what’s called a “symbolic link” to the header file’s directory. This will allow the
source code to know where to look for its header file. Of course, be sure to replace
“myhomedirectory” with your own home directory name.
If this is done properly, you should be able to type ls -all and see a line similar to:

lrwxrwxrwx 1 jnett80 cdf 47 Aug 12 12:55 MyAnalysis -> /home/jnett80/stn_example_6.1.6.m/MyAnalysis/MyAnalysis

2.4 MyModule linkdef.h

Go to the directory \ stn example \ MyAnalysis \ dict \. Create a file:

emacs MyModule_linkdef.h &

It is very important to follow the naming convention. Within this file type:

#ifdef __CINT__

#pragma link off all globals;

#pragma link off all classes;

#pragma link off all functions;

#pragma link C++ class MyModule;

#endif

For more complex analyses that contain many modules, it is customary to have a separate
* linkdef.h file for each class. We will see examples in the “The First Tasks” section when
the construction of ntuples is addressed.

10 2 THE FIRST COMPILATION

2.5 The GNUmakefile files

The control of compilation is guided by the GNUmakefile’s, and several are required. There
should already exist a GNUmakefile in the top directory of the release containing simply:

include SoftRelTools/GNUmakefile.main

Next, change directories to our analysis folder cd MyAnalysis. There should not already be
a GNUmakefile here so we make one: emacs GNUmakefile &. Copy into this:

Makefile for Examples package

#

uses SoftRelTools/standard.mk

#

###

subdirectories

SUBDIRS = src dict

ifdef USESHLIBS

LINK_SHARED = 1

endif

export LINK_SHARED

###

include SoftRelTools/standard.mk

At the moment, we only have code that requires compilation in the folders src and dict.
Later in your analysis you will likely have other folders containing modules that require
compilation. At that point, the names of the folders that contain them will have to be
added to the SUBDIRS line above.
Change directories to the src folder and create another file with the same name: emacs
GNUmakefile &. Put in this file:

Makefile for Examples package

#

uses SoftRelTools/standard.mk

#

###

file lists (standard names, local contents)

include file products

INC =

library product

ifdef LINK_SHARED

SHAREDLIB = libMyAnalysis.so

else

LIB = libMyAnalysis.a

endif

LIBCCFILES = $(filter-out $(skip_files), $(wildcard *.cc))

2.6 The empty .refresh file 11

subdirectories

SUBDIRS =

BINS =

include PackageList/link_all.mk

##

include SoftRelTools/standard.mk

include SoftRelTools/arch_spec_root_minedm.mk

include SoftRelTools/refresh.mk

It is critically important to follow the naming convention for the library names. The name
must start with lib, then the name of the analysis folder (not the name of the module),
then end with .so or .a.

Lastly, go to the dict folder and create yet another GNUmakefile. In this one, put

LINK_SHARED_MODULES = yes

ifdef LINK_SHARED

SHAREDLIB = libMyAnalysis.so

else

LIB = libMyAnalysis.a

staticlib_o_dir = $(sharedlib_o_dir)

endif

lib_o_dir = $(sharedlib_o_dir)

skip_files =

LIBCXXFILES = $(filter-out $(skip_files), $(wildcard $(lib_o_dir)*_dict.cxx))

###

CINT_SUBDIRS = $(SRT_TOP)/MyAnalysis:$(SRT_TOP)/MyAnalysis/MyAnalysis:$(SRT_TOP)/include/MyAnalysis/MyAnalysis

vpath %.hh .:$(SRT_TOP)/MyAnalysis/MyAnalysis

vpath %.h .:$(SRT_TOP)/MyAnalysis/MyAnalysis

###

#override SRT_QUAL := debug

include SoftRelTools/standard.mk

include SoftRelTools/refresh.mk

include SoftRelTools/arch_spec_root.mk

include RootUtils/arch_spec_rootcint.mk

lib: codegen

2.6 The empty .refresh file

This part is also critical for successful compilation, but also likely the most easily
overlooked. In both the src and dict directories you need to create an empty file called
.refresh

xemacs .refresh &

Once opened, simply hit the space bar once, delete the space, then hit save. This way, the
file will exist, but be completely empty. The “.” at the beginning of the file name leaves
this file invisible to the usual ls command, but will show when ls -all is executed.

12 3 THE FIRST RUN

2.7 Compile

We have now completed all necessary steps to compile (but not yet run) our empty Stntuple
module. Go to the top directory of the release and type

gmake MyAnalysis.nobin USESHLIBS=1

Doing so, I get the following output indicating a successful compilation:

[jnett80@txpc20 ~/stn_example_6.1.6.m]$ gmake MyAnalysis.nobin USESHLIBS=1

Warning! .base_release != 6.1.4

Enter

srt_setup SRT_BASE_RELEASE=6.1.6.m

to fix this problem

<**nobin**> MyAnalysis

-- codegen -- CINT HH header for MyModule

Error in <MyModule>: MyModule inherits from TObject but does not have its own ClassDef

<**compiling**> MyModule.cc

<**building library**>

<**compiling**> MyModule_dict.cxx

<**building library**>

The warning and error that appear are not as important as they sound, and not at the
moment. We will deal with the latter in the “ClassDef and ClassImp: Making Your Class
a ROOT Class” section below. The warning can be ignored and simply refers to release
6.1.6.m being a newer version of CDF software whereas release 6.1.4 has been used for this
purpose for several years.

3 The First Run

3.1 rootlogon.C and Loading MyAnalysis’ shared library

If compilation was successfully accomplished, check to see that the shared library of our
new analysis was generated. From the top directory of the release:

cd shlib/Linux2_SL-GCC_3_4/

Listing the files, I see:

libMyAnalysis.so libStntuple_ana.so libStntuple_geom.so libStntuple_obj.so

libStntuple_alg.so libStntuple_base.so libStntuple_loop.so libStntuple_val.so

So the shared library exists where it should. Don’t worry if some of the other
libStntuple *.so shared libraries do not exist.
Let’s go back to the top directory of the release and open the rootlogon.C file. Upon
entering ROOT, this file will execute first as though you were typing each line at the ROOT
command prompt. Here is what I see:

//--

// rootlogon.C: a sample ROOT logon macro allowing use of ROOT script

// compiler in CDF RunII environment. The name of this macro file

// is defined by the .rootrc file

//

// USESHLIBS variable has to be set to build Stntuple libraries locally:

//

// setenv USESHLIBS 1

3.1 rootlogon.C and Loading MyAnalysis’ shared library 13

//

// Feb 12 2001 P.Murat

//--

{

#include <iomanip.h>

#include <time.h>

// the line below tells ROOT script compiler

// where to look for the include files

gSystem->SetIncludePath(" -I./include -I$CDFSOFT2_DIR/include");

// load in ROOT physics vectors and event

// generator libraries

gSystem->Load("$ROOTSYS/lib/libPhysics.so");

gSystem->Load("$ROOTSYS/lib/libEG.so");

gSystem->Load("$ROOTSYS/lib/libDCache.so");

// load a script with the macros

char command[200];

sprintf(command,"%s/Stntuple/scripts/global_init.C",

gSystem->Getenv("CDFSOFT2_DIR"));

gInterpreter->LoadMacro(command);

// STNTUPLE shared libraries are assumed to be

// built in the private test release area with

// USESHLIBS environment variable set

// we always need libStntuple_loop, but the

// other 2 libs should be loaded in only if

// we’re running bare root

const char* exec_name = gApplication->Argv(0);

if ((strstr(exec_name,"root.exe") != 0) || (strstr(exec_name,"stnfit.exe") != 0)) {

gSystem->Load("./shlib/$BFARCH/libStntuple_base.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_obj.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_loop.so");

}

if (strstr(exec_name,"root.exe") != 0) {

gSystem->Load("./shlib/$BFARCH/libStntuple_geom.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_alg.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_ana.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_val.so");

}

// print overflows/underflows in the stat box

gStyle->SetOptStat(11111111);

// print fit results in the stat box

gStyle->SetOptFit(1110);

// this line reports the process ID which simplifies

// debugging

TAuthenticate::SetGlobalUser(gSystem->Getenv("USER"));

gInterpreter->ProcessLine(".! ps | grep root");

}

In the section:

if (strstr(exec_name,"root.exe") != 0) {

gSystem->Load("./shlib/$BFARCH/libStntuple_geom.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_alg.so");

14 3 THE FIRST RUN

gSystem->Load("./shlib/$BFARCH/libStntuple_ana.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_val.so");

}

add the line:

gSystem->Load(‘‘./shlib/\$BFARCH/libMyAnalysis.so’’);

This will load the shared library of our new analysis to ROOT along with the others.

3.2 Retriving a set of test data from SAM/Accessing SAM
data directly

If we are to perform a successful run of our new module, we need some Stntuple data to run
through it. There are several ways to access such data and if you already have an Stntuple
file to use, most of this section can probably be ignored. I will provide one possible way to
retrieve a data set. This will require access to the SAM directories, which requires SAM to be
setup where you are working. This does not seem to be universal.

SAM files are organized first in “books;” each “book” contains “datasets” of some particular
type; each “dataset” contains “filesets;” and each “fileset” contains data “files.”

First, the setup:

setup sam

setup diskcache_i -q GCC_3_4_3

setup dcap

Now suppose you want to study some Drell-Yan (Z → ll̄)–you need to know how to find the
correct stntuple files’ names. Drell-Yan is an electroweak process, so go to the CDF
electroweak page: http://www-cdf.fnal.gov/internal/physics/ewk/ewkII.html. Click on
“Datasets”. Click on “EWK Monte Carlo Datasets (new)”. You’ll see a variety of
electroweak processes and their tables with a column called “Stntuple”. Let’s choose the
run independent Z → ee process. The table indicates we want the ze0sei stntuple. Now
that we know the stntuple name, go to:
http://www-cdf.fnal.gov/ cdfopr/Stntuple/cafdfc/cdfpstn/. You’ll see a very sparse
webpage of stntuple names. Do a “find” on “ze0sei”, then click on it. You’ll be taken to this
page: http://www-cdf.fnal.gov/ cdfopr/Stntuple/cafdfc/cdfpstn/ze0sei/, which contains
information like fileset numbers and number of events in the filesets. At the bottom of this
page, click on: AAA FILES.txt. You’ll be taken here:
http://www-cdf.fnal.gov/ cdfopr/Stntuple/cafdfc/cdfpstn/ze0sei/AAA FILES.txt. WE
FINALLY FOUND THE INFORMATION WE NEED! There is a column labeled
“file” that contains the actual file names we need to download a specific stntuple file. Let’s
just pick the first one as an example. I’m putting it in the directory \ stn example \
MyAnalysis \ data \. Go to that directory and execute this command:

sam get dataset --fileList="zi037d9b.000ce0se" --group=test --downloadPlugin=dccp

After waiting a while for this set to download into the directory from which I executed the
previous commands from I see the following output:

3.3 The Driver Script 15

[jnett80@txpc20 data]$ sam get dataset --fileList="zi037d9b.000ce0se" --group=test --downloadPlugin=dccp

HeavyConsumer: 08/12/10 16:49:23: INFO : Station is set to cdf-caf

HeavyConsumer: 08/12/10 16:49:24: INFO : Created definitation name def_jnett80_20100812164923

HeavyConsumer: 08/12/10 16:49:24: INFO : Created snapshot 1019269

HeavyConsumer: 08/12/10 16:49:24: INFO : Defaulting timeout to 3600 seconds

ProjectInfo({

’baseProjectInfo’ : BaseProjectInfo({

’personInfo’ : PersonInfo({

’emailAddress’ : ’jnett@wisc.edu’,

’firstName’ : ’None’,

’lastName’ : ’None’,

’personId’ : 1360L,

’personStatus’ : ’active’,

’uid’ : ’0’,

’userName’ : ’jnett80’,

}),

’projectId’ : 1598416L,

’projectMode’ : ’unknown’,

’projectName’ : ’jnett80_20100812164923’,

’projectStatus’ : ’reserved’,

’snapshotId’ : 1019269L,

’stationName’ : ’cdf-caf’,

’workGroupName’ : ’test’,

}),

’endTime’ : SamTime(’NULL’),

’nodeName’ : ’fcdfsam1.fnal.gov’,

’osPID’ : 17005L,

’startTime’ : SamTime(1281649765.0),

})

Requesting first file...

dccp dcap://cdfdca1.fnal.gov:25136/pnfs/fnal.gov/usr/cdfen/filesets/NS/NS01/NS0175/NS0175.8/zi037d9b.000ce0se .

1492646777 bytes in 182 seconds (8009.14 KB/sec)

Requesting next file...

No more files

3.3 The Driver Script

The last major step is to make a ROOT driver script. It is this script that will be called at the
command line, access whatever data we want to run the module on, and run those modules.
In the directory \ stn example \ MyAnalysis \ drivers \ make a file myDriver.C and put
in it:

#include <iostream>

TStnAna* x;

TChain* inChain;

TStnCatalog* catalog;

TStnDataset* dataset;

void myDriver(int iset = 0, int NEvents=1000000)

{

gStyle = new TStyle("Plain","Plain");

inChain = new TChain("STNTUPLE");

TString name="none";

if (iset==10)

{

/*

ACCESS A LOCALLY SAVED SET OF DATA

*/

name ="DrellYan";

inChain->Add("~jnett80/stn_example_6.1.6.m/MyAnalysis/data/zi037d9b.000ce0se");

x = new TStnAna(inChain);

}

if (iset == 20)

{

16 3 THE FIRST RUN

/*

ACCESS A DATASET ON SAM DIRECTLY

*/

// Name of the "dataset" on SAM we want to access

char* datasetName = "ze0sei";

catalog = new TStnCatalog();

dataset = new TStnDataset();

// "cdfpstn" is the name of the "book" the "dataset" is in.

// The 4th argument is the "fileset name", typically six digits: "000001", "000002",...etc.

// The 5th argument is the file name. Leaving the 4th and 5th arguments

// empty like this allows us to run on a large amount of this type of MC.

// Specifying the name will cause execution to halt once that file

// or fileset is finished running.

catalog->InitDataset(dataset,"cdfpstn",datasetName,"","",0,999999);

x = new TStnAna(dataset);

}

MyModule* m = new MyModule();

m->SetName(name.Data());

x->AddModule(m);

x->SetNEventsToReport(100000);

x->Run(NEvents);

}

There are a few things to note. First, the name of the script and the function it contains
are both myDriver. Next, it takes two arguments. The first, iset, is an option that allows
easy access to different kinds of data if we have more than one type that we wish to
separately run through our module. Lastly, I’ve noticed that the tilde (∼) tends to
disappear when copy and pasting from this document. Be sure to include the tilde in front
of the name of your home directory or the driver script will not find the data file.

In the case iset=10, we are running through our module the file that we saved to our local
area in the previous section. In the case iset=20, we are directly accessing data on SAM to
run through our module. For this, notice that we need only three pieces of information: the
“book” name (“cdfpstn”), the “dataset” name (“chgs1c”), and the number of the “fileset”
we wish to start running on. The “book” contains the “dataset”, which contains “filesets”,
which contains “files”, like the file we saved in the previous section. 2

The second argument is the number of events to run through the module. In the driver
script, it is important to understand that TStnAna is the Stntuple module that controls the
event loop and runs the data through our module.

To run the script, go the the top level of our release and type:

root -l -q ‘‘MyAnalysis/drivers/myDriver.C(10,10)’’ >& log.txt

which will run 10 events from the WH → lνbb file acquired in the previous section from
SAM. To run on SAM data directly, change the first argument to “20”.

3.4 Run

Finally, we are ready for a first run of the data. When I execute the driver script as
indicated in the previous section, I get:

[jnett80@txpc20 ~/stn_example_6.1.6.m]$ root -l -q "MyAnalysis/drivers/myDriver.C(10,10)"

8413 pts/0 00:00:00 root

8414 pts/0 00:00:00 root.exe

2Thanks to Matteo Bauce for advice on the second case.

3.4 Run 17

root [0]

Processing MyAnalysis/drivers/myDriver.C(10,10)...

TStnRun2InputModule::BeginJob Warning - no metadata,

opening all chained files to count entries...

TStnRun2InputModule::BeginJob: chained 1 files, 11635 events

name = DrellYan

mode =

HeaderBlock at 0xba79250

ElectronBlock at 0xc44ff10

MetBlock at 0xc453b48

MuonBlock at 0xc451970

CalDataBlock at 0xba79370

JetBlock at 0xc4487b8

JetProbBlock at 0xc457980

DcasDataBlock at 0xc446500

ClusterBlock at 0xc451300

CesDataBlock at 0xba79d30

PhotonBlock at 0xc451008

TrackBlock at 0xc447928

ZVertexBlock at 0xc447748

TrigSimBlock at 0xc4452e0

PROD@PhoenixSI_Tracking at 0xc448338

Phoenix_Electrons at 0xc4505e8

PROD@Phoenix_Tracking at 0xc447df8

GenpBlock at 0xc44e880

SecVtxTagBlock at 0xc453ca0

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

----- end job: ---- StnAna

L(TeV) : -1.000

L(live): -1.000

L(offl): -1.000

>>> TStnAna::EndJob: processed 10 events, passed 10 events

Also, try running the program after changing the first argument “10” to “20”. This is the
case of selecting events directly from the Stntuple remotely and circumvents storing the
[ofter very large] stntuple file(s) in your own home area. As such, this option is more
relevant for research. I get:

[jnett80@txpc20 ~/stn_example_6.1.6.m]$ root -l -q "MyAnalysis/drivers/myDriver.C(20,10)"

8554 pts/0 00:00:00 root

8555 pts/0 00:00:00 root.exe

root [0]

Processing MyAnalysis/drivers/myDriver.C(20,10)...

THttpCatalogServer: Warning - AAA_FILES.html is inconsistent with AAA_FILES.txt, (0 vs 750), use the txt file and

TStnRun2InputModule::BeginJob: chained 750 files, 7835135 events

name = none

mode =

HeaderBlock at 0xbb2a6a8

ElectronBlock at 0xc4ed678

MetBlock at 0xc4f12b0

MuonBlock at 0xc4ef0d8

CalDataBlock at 0xbb2a7f8

JetBlock at 0xc4e5f20

JetProbBlock at 0xc4f50e8

DcasDataBlock at 0xc4e3c40

18 4 THE FIRST TASKS

ClusterBlock at 0xc4eea68

CesDataBlock at 0xbb2b158

PhotonBlock at 0xc4ee770

TrackBlock at 0xc4e5090

ZVertexBlock at 0xc4e4eb0

TrigSimBlock at 0xc4e2a20

PROD@PhoenixSI_Tracking at 0xc4e5aa0

Phoenix_Electrons at 0xc4edd50

PROD@Phoenix_Tracking at 0xc4e5560

GenpBlock at 0xc4ebfe8

SecVtxTagBlock at 0xc4f1408

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

MyModule::Event

----- end job: ---- StnAna

L(TeV) : -1.000

L(live): -1.000

L(offl): -1.000

>>> TStnAna::EndJob: processed 10 events, passed 10 events

4 The First Tasks

4.1 ClassDef and ClassImp: Making Your Class a ROOT Class

Let’s go one step further and make our class known to ROOT. There are a couple simple
steps to take with one subtlety. First, it is necessary to have a constructor with no
arguments–otherwise a cryptic error results. As we have already done this, let’s move on to
the header file. Add the following ClassDef line to the end of the class definition:

ClassDef(MyModule,0)

};

In the source code, add the following ClassImp line after the #include statements:

#include <Stntuple/obj/TStnNode.hh>

//Inform ROOT of this class

ClassImp(MyModule)

//Constructor

MyModule::MyModule():TStnModule("MyModule","MyModule")

Now go back to the top directory of this release to recompile and run as before. See
whatever ROOT manual is current for more information on ClassImp and ClassDef.

4.2 Declaring Static Data Members

This section may seem to be soley a C++ issue rather than an Stntuple issue, but it can be
subtle to organize properly and is also highly relevant to subsequent topics. Many of the

4.3 Access The Data Blocks 19

errors resulting from improper implementation are not caught by the compiler, but rather
at run time. The cause of such errors can, therefore, be difficult to rectify.

Static data memebers belonging to a class are sometimes also denoted “class variables.”
These are declared within the class declaration itself and have a unique value for all
instances of the class. There are a myriad of reasons one might want to include such a
member, but it’s important to note that there are two steps to creating one. 3 First, we
declare the variable under the public: section of the header file MyModule.hh.

// Class variable declaration

static const Int_t x;

Second, since header files do not like value-assignment (headers are usually meant only for
declarations while implementation is reserved for the source code) we assign the value of a
class variable within the source code MyModule.cc, but in a manner that the
value-assignment is executed once and all of the source code is within it’s scope. So we
actually do not put the assignment inside any function; rather, we customarily assign the
value just above the constructor as follows:

#include "Stntuple/loop/TStnInputModule.hh"

#include <Stntuple/obj/TStnNode.hh>

// Class variable value assignment

const int MyModule::x = 1;

//Constructor

MyModule::MyModule():TStnModule("MyModule","MyModule"){}

4.3 Access The Data Blocks

In the “Source Code and Header Files” section earlier we included and declared many
Stntuple data blocks in the header and called RegisterDataBlock during
MyModule::BeginJob for each of them. This “registers” the data blocks for our module,
but does not fill them. It may have seemed a bit extraneous at the time, but now we’ll
make use of them.

Recall that MyModule::BeginJob executes once before any data is run through our module,
but the information must obviously change for every event–no two events are the same.
Hence, we must fill these blocks with event information for every event in the loop. Let’s
create a new function within MyModule that fill the blocks from MyModule::Event.

Let’s begin with an example of fill a single data block, the TStnMuonBlock, and later replace
it with a loop over all the data blocks. First, write into the public: section of MyModule.hh

// Fill the Stntuple data blocks

void FillDataBlocks(int ientry);

Then write the body of this new function in the source code:

3http://www.cplusplus.com/doc/tutorial/classes2.html

20 4 THE FIRST TASKS

// Fill Stntuple Data Blocks

void MyModule::FillDataBlocks(int ientry)

{

fMuonBlock ->GetEntry(ientry);

}

And, finally, we must call this function from MyModule::Event:

int MyModule::Event(int ientry)

{

std::cout << "MyModule::Event" << std::endl;

// Fill Stntuple Data Blocks

FillDataBlocks(ientry);

// Access the number of muons recorded for this event.

int nmuons=fMuonBlock->NMuons();//returns the number of muons for this event

std::cout << " nmuons = " << nmuons << std::endl;

return 0;

}

After recompiling and running you should see something like:

[jnett80@txpc20 ~/stn_example_6.1.6.m]$ root -l -q "MyAnalysis/drivers/myDriver.C(10,10)"

11226 pts/0 00:00:00 root

11227 pts/0 00:00:00 root.exe

root [0]

Processing MyAnalysis/drivers/myDriver.C(10,10)...

TStnRun2InputModule::BeginJob Warning - no metadata,

opening all chained files to count entries...

TStnRun2InputModule::BeginJob: chained 1 files, 11635 events

name = DrellYan

mode =

HeaderBlock at 0xba7d720

ElectronBlock at 0xc4543e0

MetBlock at 0xc458018

MuonBlock at 0xc455e40

CalDataBlock at 0xba7d840

JetBlock at 0xc44cc88

JetProbBlock at 0xc45be50

DcasDataBlock at 0xc44a9d0

ClusterBlock at 0xc4557d0

CesDataBlock at 0xba7e200

PhotonBlock at 0xc4554d8

TrackBlock at 0xc44bdf8

ZVertexBlock at 0xc44bc18

TrigSimBlock at 0xc4497b0

PROD@PhoenixSI_Tracking at 0xc44c808

Phoenix_Electrons at 0xc454ab8

PROD@Phoenix_Tracking at 0xc44c2c8

GenpBlock at 0xc452d50

SecVtxTagBlock at 0xc458170

MyModule::Event

nmuons = 2

MyModule::Event

nmuons = 3

MyModule::Event

nmuons = 1

4.3 Access The Data Blocks 21

MyModule::Event

nmuons = 1

MyModule::Event

nmuons = 1

MyModule::Event

nmuons = 2

MyModule::Event

nmuons = 0

MyModule::Event

nmuons = 2

MyModule::Event

nmuons = 1

MyModule::Event

nmuons = 0

----- end job: ---- StnAna

L(TeV) : -1.000

L(live): -1.000

L(offl): -1.000

>>> TStnAna::EndJob: processed 10 events, passed 10 events

To fill all the data blocks in a compact form, replace the line in
MyModule::FillDataBlocks with

TObjArray* nodes = GetAna()->GetEvent()->GetListOfNodes();

for (int i=0; i< nodes->GetEntries(); i++)

{

TStnNode* n = (TStnNode*) nodes->At(i);

n->GetDataBlock()->GetEntry(ientry);

}

All we’ve actually accessed so far is the number of muons appearing in an event. Let’s go a
step further and see the kind of information we can learn about these muons. To see what
stubs each muon has, we can loop over all the muons for each event. We can create a pointer
to the instance of TStnMuon for each muon and access a function that returns a boolean for
whether this muon has a particular stub. Add the following loop to MyModule::Event:

int MyModule::Event(int ientry)

{

std::cout << "MyModule::Event" << std::endl;

// Fill Stntuple Data Blocks

FillDataBlocks(ientry);

// Access the number of muons recorded for this event.

int nmuons=fMuonBlock->NMuons();//returns the number of muons for this event

std::cout << " nmuons = " << nmuons << std::endl;

for(int imu=0; imu<nmuons; imu++) //loop over the reconstructed muons

{

//Access reconstructed muons information

TStnMuon* muon = fMuonBlock->Muon(imu);//fMuonBlock is a TStnMuonBlock.

TStnTrack* trk = fTrackBlock->Track(muon->TrackNumber());

const bool cmupstub = (muon->HasCmuStub() && muon->HasCmpStub());

const bool cmxstub = (muon->HasCmxStub());

const bool cmpstub = (muon->HasCmpStub() && !trk->IsCMUFid());

const bool cmustub = (muon->HasCmuStub() && !trk->IsCMPFid());

const bool bmustub = (muon->HasBmuStub());

std::cout << " cmupstub = " << cmupstub << std::endl;

std::cout << " cmxstub = " << cmxstub << std::endl;

std::cout << " cmpstub = " << cmpstub << std::endl;

22 4 THE FIRST TASKS

std::cout << " cmustub = " << cmustub << std::endl;

std::cout << " bmustub = " << bmustub << std::endl;

std::cout << " ---------------" << std::endl;

}

return 0;

}

Recompile, run, and check the log to see a listing of what stubs each muon has.

4.4 Make and Fill a Histogram

Histograms are centrally important for any kind of study. Now that we know how to access
the information of an event stored in the Stntuple, let’s generate a couple histograms of the
output. It is important to create a particular histogram object once, then continually fill it
for each event. This means we must instantiate our histogram class of choice outside of the
event loop. One way to do this is declaring the histogram objects as static members.
Let’s begin by choosing to work with the TH1F histogram class. Since this is a ROOT

histogram we want to have a ROOT file to save it in. Hence, we also need a TFile object. In
the class declarations of the header file MyModule.hh, write

class TFile;

class TH1F;

(this goes just above class MyModule: public TStnModule).
Since we have just accessed the muon block of this Stntuple, let’s make histograms of some
muon η and the PT distributions. In the public: section of the class declaration for
MyModule, write

// Histograms

static TH1F* testEtaHistogram;

static TH1F* testPtHistogram;

static const Double_t etabins[41];

static const Double_t ptbins[151];

Declare the TFile object under the protected: section:

TFile* _file;

That’s it for the header file, now move on to the source code. Recall that we assign value to
static members outside of any function, customarily just above the constructor:

// Class constants

TH1F* MyModule::testEtaHistogram = new TH1F("testMuonEta","eta",40,&(*etabins));

TH1F* MyModule::testPtHistogram = new TH1F("testMuonPt","pt",150,&(*ptbins));

const Double_t MyModule::etabins[41] = {-2.0, -1.9, -1.8, -1.7, -1.6, -1.5, -1.4, -1.3, -1.2, -1.1,

-1.0, -0.9, -0.8, -0.7, -0.6, -0.5, -0.4, -0.3, -0.2, -0.1,

0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,

1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0};

const Double_t MyModule::ptbins[151] = {0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,

10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0,

20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,

30.0,31.0,32.0,33.0,34.0,35.0,36.0,37.0,38.0,39.0,

40.0,41.0,42.0,43.0,44.0,45.0,46.0,47.0,48.0,49.0,

50.0,51.0,52.0,53.0,54.0,55.0,56.0,57.0,58.0,59.0,

60.0,61.0,62.0,63.0,64.0,65.0,66.0,67.0,68.0,69.0,

4.4 Make and Fill a Histogram 23

70.0,71.0,72.0,73.0,74.0,75.0,76.0,77.0,78.0,79.0,

80.0,81.0,82.0,83.0,84.0,85.0,86.0,87.0,88.0,89.0,

90.0,91.0,92.0,93.0,94.0,95.0,96.0,97.0,98.0,99.0,

100.0,101.0,102.0,103.0,104.0,105.0,106.0,107.0,108.0,109.0,

110.0,111.0,112.0,113.0,114.0,115.0,116.0,117.0,118.0,119.0,

120.0,121.0,122.0,123.0,124.0,125.0,126.0,127.0,128.0,129.0,

130.0,131.0,132.0,133.0,134.0,135.0,136.0,137.0,138.0,139.0,

140.0,141.0,142.0,143.0,144.0,145.0,146.0,147.0,148.0,149.0,150.0};

Notice that the number of bins the histograms are told to have (the 3rd argument) are 40
and 150, while the vectors defining what those bins are (the 4th argument) have 41 and 151
elements, respectively. Don’t think in terms of counting the number of elements of the
vector; think in terms of counting the number of “gaps” between the numbers of the
vectors. These gaps are the bins to be filled by the η and PT values.
Declared objects contain junk until they’re assigned a value, so initialize the TFile object
in the constructor with

_file = 0;

We want only one TFile object to be declared when we run some set of data through our
module, so we instantiate it in MyModule::BeginJob with

_file = new TFile("testrootfile.root", "RECREATE");

Next, let’s go down to MyModule::EndJob, which executes after all the data is finished
running through out module, and save the filled histograms to file.

int MyModule::EndJob()

{

std::cout << "MyModule::EndJob" << std::endl;

// Write histograms to the output file

_file->cd();

testEtaHistogram->Write();

testPtHistogram->Write();

_file->Close();

return 0;

}

This is a good place to pause to recompile and run, even though the histograms are not
being filled with anything yet. Be sure to do both. Sometimes syntax errors made with
static members do not show up until run time. Also, check your directory to see if the
testrootfile.root file appeared after running.

Moving on to actually filling these histograms, we will require a lorentz vector to calculate
for us the quantities we are actually interested in, so add the following to the included files
at the top of the source code:

#include "TLorentzVector.h"

Recall from the previous section where we learned how to fill and access the muon data
block, that we wrote a for loop over over the muons for each event. Within that loop, write:

24 4 THE FIRST TASKS

testMuonEta
Entries 9857

Mean -0.004096

RMS 0.9899

Underflow 157

Overflow 190

Integral 9510

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

100

150

200

250

300

350

testMuonEta
Entries 9857

Mean -0.004096

RMS 0.9899

Underflow 157

Overflow 190

Integral 9510

eta

Figure 1: η Distribution of muons for 10000 Z → ee events.

testMuonPt
Entries 9857

Mean 27.31

RMS 16.82

Underflow 0

Overflow 130

Integral 9727

0 20 40 60 80 100 120 140
0

100

200

300

400

500

600

testMuonPt
Entries 9857

Mean 27.31

RMS 16.82

Underflow 0

Overflow 130

Integral 9727

pt

Figure 2: PT Distribution of muons for 10000 Z → ee events.

//Assign values for current reconstructed muon

const TLorentzVector* q = muon->Momentum();

Double_t reconeta = q->PseudoRapidity(); //(jmn)

Double_t reconet = q->E();

Double_t reconphi = q->Phi();

Double_t reconpt = muon->TrackPt();

// Fill histogram

testEtaHistogram->Fill(reconeta);

testPtHistogram->Fill(reconpt);

This will create a lorentz vector for the muon, then return that values we are interested in
filling out histograms with. I included a couple other values people commonly find useful as
well.
We are now ready to recompile and run our module. After running 10000 events (remember
to remove cout print statements!), I get the histograms in figures 1 and 2.
Keep in mind that these particular distributions don’t actually reveal anything interesting,
physically. They just show values pertaining to all TStnMuon objects in all events. They are
not even fully identified muons yet, just basically tracks that could be muons.

4.5 Create a Basic Ntuple 25

4.5 Create a Basic Ntuple

An ntuple is an object that stores information for each event passed through a module and
can subsequently be access from ROOT to make histograms. As opposed to making
histograms directly within our module as in the previous section “Make and Fill a
Histogram,” an ntuple allows far greater flexibility. If we wanted to change some aspect of
the in-module-histogram (such as changing or adding a new cut), we would have to change
the code, recompile, and rerun all the data. This can get extremely time consuming if we’re
running a large body of data. With an ntuple, however, we need only run the data once and
then afterward play around with various cuts at the ROOT command prompt until the
desired selection is found. We will try some explicit examples at the end of this section.
To accomplish this task, we will make another module containing our personal ntuple class.
This class will be instantiated in MyModule, where we will also declare a TTree object 4.
This TTree object, for our present purposes, will have just a single branch (TBranch object
5) into which our ntuple will be loaded. Finally, this ntuple-containing tree object will be
saved to the same TFile that our simple histograms were in the previous section. We will
again open this file with ROOT to access our ntuple information.
Starting from the top directory of our release, create and open the following two files:

emacs MyAnalysis/src/MyNtuple.cc &

emacs MyAnalysis/MyAnalysis/MyNtuple.hh &

Our ntuple source code will be mostly empty for now. Put into the source code file:

#include <math.h>

#include "MyAnalysis/MyNtuple.hh"

ClassImp(MyNtuple)

// Constructor

MyNtuple::MyNtuple()

{

}

// Destructor

MyNtuple::~MyNtuple()

{

}

Put into the header file:

#ifndef __MyNtuple__

#define __MyNtuple__

#include <iostream>

#include "TObject.h"

4http://root.cern.ch/root/html/TTree.html
5http://root.cern.ch/root/html/TBranch.html

26 4 THE FIRST TASKS

#include "TObjArray.h"

using namespace std;

class MyNtuple : public TObject

{

public:

// Class Constructor.

MyNtuple();

// Class destructor.

~MyNtuple();

private:

// Use this class in ROOT

ClassDef(MyNtuple,1);

};

#endif

Of course, this will not fully compile if we forget to make the
MyAnalysis/dict/MyNtuple linkdef.h file containing:

#ifdef __CINT__

#pragma link off all globals;

#pragma link off all classes;

#pragma link off all functions;

#pragma link C++ nestedclasses;

#pragma link C++ nestedtypedefs;

#pragma link C++ class MyNtuple;

#endif

This is a good place to pause and make sure what we have so far compiles and runs.

gmake MyAnalysis.nobin USESHLIBS=1

root -l -q ‘‘MyAnalysis/drivers/myDriver.C(10,10)’’ >& log

Now we need MyNtuple to communicate with MyModule. In MyModule.hh, write #include
‘‘MyAnalysis/MyNtuple.hh’’ where the other #include’ed files are, and in the class
declarations write:

class MyNtuple;

class TTree;

class TBranch;

4.5 Create a Basic Ntuple 27

In MyModule.cc, write #include ‘‘MyAnalysis/MyNtuple.hh’’ at the top as well. Back
to MyModule.hh, include the following lines under the protected: section of the class
declaration:

TTree* _tree;

TBranch* _branch;

MyNtuple* _ntuple;

That’s it for the basic structure. Assuming that it still compiles and runs, let’s move on to
putting some content in our new ntuple. As a first example, lets start with some
information about the muons. In MyNtuple.hh under the public: section, write in the
following value-assignment functions:

// Fill Basic Info

void SetMuonEta (Double_t val) { _muonEta = val; }

void SetMuonEt (Double_t val) { _muonEt = val; }

void SetMuonPhi (Double_t val) { _muonPhi = val; }

void SetMuonPt (Double_t val) { _muonPt = val; }

In the same file under the public: member section again, declare the variables associated
with the functions we just put in:

// Basic info

Double_t _muonEta;

Double_t _muonEt;

Double_t _muonPhi;

Double_t _muonPt;

Now let’s migrate to MyModule.cc and start making use of this new ntuple class we’ve
created. Like usual, we start by initializing our declared objects in the constructor. Have
your constructor now look like:

//Constructor

MyModule::MyModule():TStnModule("MyModule","MyModule")

{

_file=0;

_tree=0;

_ntuple = new MyNtuple();

// The first argument "tree" is the object called in ROOT to

// make histograms.

_tree = new TTree("tree","WH Background Ntuple");

// Option B at http://root.cern.ch/root/html/TTree.html

_branch = _tree->Branch("onebranch","MyNtuple",&_ntuple, 32000,1);

}

In MyModule::EndJob, write the tree object to file

_tree-> Write();

in the same place we wrote the histograms to file, after file->cd(); and before
file->Close();.
After compiling and running again, observe how this has affected our output file so far.
Open the root file in the top directory of the release

28 4 THE FIRST TASKS

root testrootfile.root

At the ROOT command prompt open a file browser:

TBrowser b

Double click on ROOT files; double click on testrootfile.root. Now, in addition to the
histograms from the previous section, we see a folder for the TTree object we made, inwhich
we find a single “branch” called onebranch, inwhich we find “leaves” for each variable
declared in our ntuple. Since we have not assigned values to these variables, these leaves are
still empty.
We are just about ready to move on to MyModule::Event to start filling our ntuple, but we
must make one digression first. It is important to have a Clear() function in our ntuple.
Sometimes a particular value of our ntuple may not be updated for some particular event,
in which case the value from the previous event would be counted (or double-counted,
actually). Hence, we want to create a simple function that will reset all variables to some
default value. This default value should be nonphysical; it should be a value that simply
will not occur as a legitimate experimental value. For instance, assign any counters the
value of −1. In MyNtuple.hh, declare the new function

void Clear();

under the public: section. In MyNtuple.cc, write in the following new function body:

void MyNtuple::Clear()

{

// Be sure to reset the values to physically

// unrealistic numbers.

_muonEta = -999.0;

_muonEt = -1;

_muonPhi = -999.0;

_muonPt = -1;

}

At last, let’s start filling our ntuple with information. We should still have a for loop over
the muons of an event in MyModule::Event from a previous section of this document. If
not, edit it so that it now looks like:

int MyModule::Event(int ientry)

{

std::cout << "MyModule::Event" << std::endl;

// Clear the ntuple

_ntuple->Clear();

// Fill Stntuple Data Blocks

FillDataBlocks(ientry);

// Access the number of muons recorded for this event.

int nmuons=fMuonBlock->NMuons();//returns the number of muons for this event

std::cout << " nmuons = " << nmuons << std::endl;

for(int imu=0; imu<nmuons; imu++) //loop over the reconstructed muons

{

TStnMuon* muon = fMuonBlock->Muon(imu);//fMuonBlock is a TStnMuonBlock.

//Assign values for current reconstructed muon

const TLorentzVector* q = muon->Momentum();

_ntuple->SetMuonEta(q->PseudoRapidity());

4.5 Create a Basic Ntuple 29

_ntuple->SetMuonEt (q->E());

_ntuple->SetMuonPhi(q->Phi());

_ntuple->SetMuonPt (q->Pt());

std::cout << " pt = " << q->Pt() << std::endl;

_tree->Fill();

}

return 0;

}

First, note that we cleared the ntuple information at the beginning of the event. If, for
intance, an event had no muons, then the variables containing muon information would not
acquire new values in the loop. This may lead to wrong information being inadvertantly
filled if we are not careful. Second, notice that the tree object calls its Fill function inside
the loop. In this case, there may be several muons in a single event. If we filled the tree
after the loop, we would only be filling the information of the last muon in the list for a
particular event.

Let’s compile, run, and look in the ROOT file again. When I run 10000 events and then
double click on the leaf titled muonPt, I get the rather useless plot in figure 3. I can get the
same plot at the ROOT command line by typing

tree->Draw(‘‘_muonPt’’)

This is where we illustrate the power of using an ntuple over making in-module histograms.
We can see from the axes of figure 3 that there must be a few mismeasured muons at
extremely high PT . So let’s consider only muons with PT < 200 GeV. Also, it is often the
case that we only want to consider muons above some minimum PT threshold. So let’s also
restrict ourselves to muons with PT > 10 GeV. The syntax at the ROOT command line is

tree->Draw(‘‘_muonPt’’,’’_muonPt<200 && _muonPt>10’’)

This yields figure 4.

We can also make combinations of cuts between different kinds of values. Suppose we
decide we want to look at the pseudorapidity distribution of muons. We would type

tree->Draw(‘‘_muonEta’’)

and get figure 5. However, we then realize we don’t want the junk muons (very low and
very high PT muons), just as before. So we include some additional cuts

tree->Draw(‘‘_muonEta’’,’’_muonPt<200 && _muonPt>10’’)

and get figure 6. Again, throughout all this manipulation of cuts to get exactly the
combinations we want, we never had to rerun the data.

Eventually, however, we do realize that we are still making and saving these histograms one
at a time, whereas a full analysis will often require us to make and remake scores of plots
many times over. In that case, we will need to construct stand-alone programs that
generate all those plots and save them directly into a specified directory in one fell swoop
on the keyboard. That task, however, will remain beyond the scope of this document.

30 4 THE FIRST TASKS

htemp
Entries 9857

Mean 36.04

RMS 150.9

Underflow 0

Overflow 0

Integral 9857

0 2000 4000 6000 8000 10000
0

2000

4000

6000

8000

10000

htemp
Entries 9857

Mean 36.04

RMS 150.9

Underflow 0

Overflow 0

Integral 9857

onebranch._muonPt

Figure 3: tree->Draw(‘‘ muonPt’’)

htemp
Entries 9537

Mean 28.42

RMS 18.67

Underflow 0

Overflow 0

Integral 9537

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

htemp
Entries 9537

Mean 28.42

RMS 18.67

Underflow 0

Overflow 0

Integral 9537

_muonPt {_muonPt>10.0 && _muonPt<200.0}

Figure 4: tree->Draw(‘‘ muonPt’’,’’ muonPt<200 && muonPt>10’’)

htemp
Entries 9857

Mean 0.003466

RMS 1.057

Underflow 0

Overflow 0

Integral 9857

-3 -2 -1 0 1 2 3
0

50

100

150

200

250

htemp
Entries 9857

Mean 0.003466

RMS 1.057

Underflow 0

Overflow 0

Integral 9857

_muonEta

Figure 5: tree->Draw(‘‘ muonEta’’)

4.6 Create a Better Ntuple For A More Complex Analysis

The previous section provides a good introduction to what an ntuple is and does, but is
only adequate for the most basic of analyses. The ntuple in the previous section only saved
numerical values; a more general use of ntuples allows for more complex instances of classes

4.6 Create a Better Ntuple For A More Complex Analysis 31

htemp
Entries 9537

Mean 0.005193

RMS 1.057

Underflow 0

Overflow 0

Integral 9537

-3 -2 -1 0 1 2 3
0

20

40

60

80

100

120

140

160

180

200

220

240

htemp
Entries 9537

Mean 0.005193

RMS 1.057

Underflow 0

Overflow 0

Integral 9537

_muonEta {_muonPt>10.0 && _muonPt<200.0}

Figure 6: tree->Draw(‘‘ muonEta’’,’’ muonPt<200 && muonPt>10’’)

to be saved as well.

For instance, any particular event has a single-valued “header” variables
(TStnHeaderBlock) that can be stored to the ntuple, whereas the same event may have
several muons with several different values to be stored for each event. It is then a
convenient and common practice to create a new class for these muons that records all
relevant information for a particular muon, then make an array of instances of this muon
class that is stored in the ntuple.

It was mentioned in the previous section that one of the reasons for having ntuples is to
store event data in a smaller, more managable form since we are hand-picking what
information we want. There are a myriad of ways to utilize ntuples in an analysis, but in
this section we will expand upon the previous one in the following particular manner.
Instead of saving single variables to the ntuple we will save more complex C++ objects.
The function of MyModule here will be just to pick and choose what information we want to
save to our ntuple from each event. We will subsequently create a new module MyAnalyzer
whose purpose will be to retrieve information from the ntuple and calculate desired
quantities from the stored information. Those desired quantities will then be stored into a
simple new data structure in a new ROOT file that we can access in a manner similar to the
previous section.

The reasoning behind this strategy is that we should hopefully be able to run MyModule

once over a large amount of data. This may take many hours or days. Once our ntuple is
filled, we can perform whatever calculations are desired in MyAnalyzer. Since it is expected
that we will need to continuously play with and alter these calculations, it is imperative
that we not be required to wait those long hours every time we wish to alter some
calculation. Thus, it will be MyModule’s job to fill the ntuple with the “raw” data from the
Stntuple, load it into a TTree, and save the tree to a ROOT file. MyAnalyzer’s purpose will
be to calculate desired quantities from the data stored in that ROOT file, then save those
quantities to new ntuples that contain only the numbers desired for a particular physics
analysis (or set of analyses).

32 4 THE FIRST TASKS

4.6.1 Storing an Object to an Ntuple

For our first task, let’s create a new class that stores information from TStnHeaderBlock.
These variables will only need to be filled once per event so this will be mostly a
pedagogical task concerning how to add more complex objects to our ntuple. As always, the
first and most easily forgotten step is to make our *linkdef.h file so that the new module
will compile. In the folder stn example 6.1.6.m/MyAnalysis/dict create a file called
MyHeaderBlock linkdef.h. Write in this file:

#ifdef __CINT__

#pragma link off all globals;

#pragma link off all classes;

#pragma link off all functions;

#pragma link C++ nestedclasses;

#pragma link C++ nestedtypedefs;

#pragma link C++ class MyHeaderBlock;

#endif

Now create a source code file (stn example 6.1.6.m/MyAnalysis/src/MyHeaderBlock.cc)
and a header file (stn example 6.1.6.m/MyAnalysis/MyAnalysis/MyHeaderBlock.hh).

Put in the source code file:

#include <math.h>

#include <iostream>

#include "Stntuple/obj/TStnHeaderBlock.hh"

#include "TLorentzVector.h"

using namespace std;

#include "MyAnalysis/MyHeaderBlock.hh"

ClassImp(MyHeaderBlock)

MyHeaderBlock::MyHeaderBlock() : TObject()

{

_eventNumber = -1;

_runNumber = -1;

_sectionNumber = -1;

_instLum = -1.0;

}

MyHeaderBlock::~MyHeaderBlock(){}

void MyHeaderBlock::Clear()

{

_eventNumber = -1;

_runNumber = -1;

_sectionNumber = -1;

_instLum = -1.0;

}

void MyHeaderBlock::Print()

{

std::cout << "---------------------------------------" << std::endl;

std::cout << "---------- My Header Block ------------" << std::endl;

std::cout << "---------------------------------------" << std::endl;

4.6 Create a Better Ntuple For A More Complex Analysis 33

std::cout << "-- Event Number = " << _eventNumber << std::endl;

std::cout << "-- Run Number = " << _runNumber << std::endl;

std::cout << "-- Section Number = " << _sectionNumber << std::endl;

std::cout << "-- InstLum = " << _instLum << std::endl;

std::cout << std::endl;

}

In the header file, put:

#ifndef _MYHEADERBLOCK_HH_

#define _MYHEADERBLOCK_HH_

#include "TObject.h"

#include "TLorentzVector.h"

#include "Stntuple/obj/TStnHeaderBlock.hh"

class TStnHeaderBlock;

class MyHeaderBlock : public TObject

{

public:

MyHeaderBlock();

~MyHeaderBlock();

// Return event info

Int_t EventNumber () { return _eventNumber; }

Int_t RunNumber () { return _runNumber; }

Int_t SectionNumber () { return _sectionNumber; }

Float_t InstLum () { return _instLum; }

// Filling muon info

void SetEventNumber (Int_t val) { _eventNumber = val; }

void SetRunNumber (Int_t val) { _runNumber = val; }

void SetSectionNumber (Int_t val) { _sectionNumber = val; }

void SetInstLum (Float_t val) { _instLum = val; }

// Clear contents

void Clear();

void Print();

protected:

Int_t _eventNumber;

Int_t _runNumber;

Int_t _sectionNumber;

Float_t _instLum;

ClassDef(MyHeaderBlock,1);

};

#endif

Assuming MyHeaderBlock now compiles and runs properly, let’s move on to altering our
ntuple (MyNtuple) so that it will accept and store such objects. Remove any variable
declarations and functions related to filling or returning those variables–we’re rewriting this
(if the Clear() function is still there, leave it, but empty). Don’t forget to remove the same
variables from the source code file as well. Lastly, go to MyModule::Event() and remove
any lines that call the functions we just deleted. We’re restarting construction of the ntuple
module from scratch, so just leave the skeleton structure.

Now the source file for MyNtuple should be

34 4 THE FIRST TASKS

#include <math.h>

#include "MyAnalysis/MyNtuple.hh"

#include "MyAnalysis/MyHeaderBlock.hh"

ClassImp(MyNtuple)

//Constructor

MyNtuple::MyNtuple()

{

_headerBlock = new MyHeaderBlock();

}

//Destructor

MyNtuple::~MyNtuple(){}

void MyNtuple::Clear()

{

_headerBlock->Clear();

}

and the header file for MyNtuple should be

#ifndef __MyNtuple__

#define __MyNtuple__

#include <iostream>

#include "TObject.h"

#include "TObjArray.h"

#include "MyAnalysis/MyHeaderBlock.hh"

using namespace std;

class MyNtuple : public TObject

{

public:

// Class Constructor.

MyNtuple();

// Class destructor.

~MyNtuple();

// Return objects from a filled ntuple

MyHeaderBlock* NtHeaderBlock () { return _headerBlock; }

// Add objects to our ntuple

void AddHeaderBlock (MyHeaderBlock* block) { _headerBlock = block; }

// Object Declarations

// (These members must be public for the analyzer module to access them)

MyHeaderBlock* _headerBlock;

void Clear();

private:

// Use this class in ROOT

ClassDef(MyNtuple,1);

};

#endif

Now we are ready to fill this in MyModule. Include our new header block in both
MyModule.hh and MyModule.cc with

#include "MyAnalysis/MyHeaderBlock.hh"

Change MyModule::Event so that it looks like:

4.6 Create a Better Ntuple For A More Complex Analysis 35

int MyModule::Event(int ientry)

{

//std::cout << "MyModule::Event" << std::endl;

// Clear the ntuple

_ntuple->Clear();

// Fill Stntuple Data Blocks

FillDataBlocks(ientry);

// Fill our header block and add to the ntuple

MyHeaderBlock* header = new MyHeaderBlock();

header->SetEventNumber (GetHeaderBlock()->EventNumber());

header->SetRunNumber (GetHeaderBlock()->RunNumber());

header->SetSectionNumber(GetHeaderBlock()->SectionNumber());

header->SetInstLum (GetHeaderBlock()->InstLum());

_ntuple->AddHeaderBlock(header);

// Fill the values assigned to the tree (our ntuple) with

// the values for this event.

_tree->Fill();

return 0;

}

If we again enter the ROOT file output, open a browser, and go into our tree we will find a
leaf for our header object. However, we will not be able to access the data members the
header object contains anymore. This will be put off until the output of the analyzer
module we have yet to make.

4.6.2 Storing an Array of Objects in an Ntuple

Before putting our analyzer module together, let’s see how to store an array of objects to
our ntuple. Whereas the header information is unique for each event, there may be several
muons per event that each have information to be recorded. As such, we will construct a
MyMuon class in a manner completely analogous to MyHeaderBlock. Then, instead of saving
instances of MyMuon to the ntuple, we will make an array (TObjArray) of muon objects
within MyModule and save that to the ntuple. This way, we are still consistently filling the
tree once per event.
Following what we did for MyHeaderBlock, begin by making the
stn example/MyAnalysis/dict/MyMuon linkdef.h file as before. Then make a header file
(MyAnalysis/MyAnalysis/MyMuon.hh) containing:

#ifndef _MYMUON_HH_

#define _MYMUON_HH_

#include "TObject.h"

#include "TLorentzVector.h"

#include "Stntuple/obj/TStnMuon.hh"

#include "Stntuple/obj/TStnTrack.hh"

class TStnMuon;

class MyMuon : public TObject

{

public:

MyMuon();

~MyMuon();

36 4 THE FIRST TASKS

// Return event info

Double_t Eta () { return _eta; }

Double_t Et () { return _et; }

Double_t Phi () { return _phi; }

Double_t Pt () { return _pt; }

// Filling muon info

void SetEta (Double_t val) { _eta = val; }

void SetEt (Double_t val) { _et = val; }

void SetPhi (Double_t val) { _phi = val; }

void SetPt (Double_t val) { _pt = val; }

// Clear Contents

void Clear();

protected:

// Basic muon info

Double_t _eta;

Double_t _et;

Double_t _phi;

Double_t _pt;

ClassDef(MyMuon,1);

};

#endif

And make the source code (MyAnalysis/src/MyMuon.cc) containing:

#include "TLorentzVector.h"

using namespace std;

#include "MyAnalysis/MyMuon.hh"

ClassImp(MyMuon)

MyMuon::MyMuon() : TObject()

{

_eta = -999.0;

_et = -999.0;

_phi = -999.0;

_pt = -999.0;

}

MyMuon::~MyMuon(){}

void MyMuon::Clear()

{

_eta = -999.0;

_et = -999.0;

_phi = -999.0;

_pt = -999.0;

}

Let’s go back to MyNtuple and let it accept TObjArray objects. It is important to note that
MyMuon inherits from TObject, which is what allows us to load MyMuon instances into a
TObjArray object.

First, check MyNtuple to see if TObjArray’s are included:

#include "TObjArray.h"

Then write in an object declaration;

4.6 Create a Better Ntuple For A More Complex Analysis 37

TObjArray* _muonArray;

then a function that adds a TObjArray to the ntuple;

void AddMuonList (TObjArray* list) { _muonArray = list; }

and finally a function that will return the TObjArray

TObjArray* NtMuonList() { return _muonArray; }

Moving on to MyNtuple.cc, write the following declaration into the constructor:

_muonArray = new TObjArray();

_muonArray->SetOwner();

The purpose of SetOwner() is to “Set whether this collection is the owner (enable==true)
of its content. If it is the owner of its contents, these objects will be deleted whenever the
collection itself is deleted.” 6 In the Clear() function, write in the line

_muonArray->Clear();

We are finally ready to declare and fill MyMuon objects in MyModule and then form them
into an array that is saved to the ntuple. Let’s begin with MyModule.hh. We first need to
include the our new muon class:

#include ‘‘MyAnalysis/MyMuon.hh’’

Write in the line

class MyMuon;

in the appropriate place, and declare the object array under the protected class members.

TObjArray* _muonArray;

In the source code MyModule.cc, again include our muon class:

#include ‘‘MyAnalysis/MyMuon.hh’’

Instantiate the TObjArray that was declared in the header in the constructor:

_muonArray = new TObjArray();

The last step in filling muon informtation to our ntuple is to put the following lines in
MyModule::Event() just after (or before, it doesn’t matter) the header values we put in
just above:

// Fill the array of MyMuon objects

int nmuons=fMuonBlock->NMuons();//returns fNMuons from TStnMuonBlock.hh

for(int imu=0; imu<nmuons; imu++) //loop over the reconstructed muons

{

//Access reconstructed muons information

TStnMuon* muon = fMuonBlock->Muon(imu);//fMuonBlock is a TStnMuonBlock.

TStnTrack* trk = fTrackBlock->Track(muon->TrackNumber());

const TLorentzVector* q = muon->Momentum();

MyMuon* mymuon = new MyMuon();

mymuon->SetEta (q->PseudoRapidity());

mymuon->SetEt (q->E());

mymuon->SetPhi (q->Phi());

mymuon->SetPt (q->Pt());

_muonArray->Add(mymuon);

}

_ntuple->AddMuonList(_muonArray);

6http://root.cern.ch/root/html/TCollection.html#TCollection:SetOwner

38 4 THE FIRST TASKS

4.6.3 Building an Analyzer Module for an Ntuple

At last, we are ready to build an analyzer module. This new module will take the output of
MyModule (testrootfile.root) as it’s input, access the TTree object that contains our
now-filled ntuple, perform desired calculations on these values, then save these new desired
values to a new TTree which will be saved in a new ROOT file. In this particular example,
our ntuple has a very limited amount of information saved in it so I will not actually
calculate new values. Instead, I’ll just show how to access some of the data in the ntuple
and resave the same values to the aforementioned data structure. This may seem to be a
redundant step (and it is) since we’re just resaving the same numbers, but there are several
pedagogical reasons for doing so. First, this section is already far more expansive than the
first section on creating ntuples and it doesn’t need any further unnecessary complexity.
Second, we have already covered saving information into a TTree; retrieving information
from a TTree is no less trivial and the central point at present. Third, any particular
calculations would detract from the generality intended in this document. The kinds of
calculations that could be found in this kind of analyzer module would be the application of
specific trigger requirements, calculating the invariant mass of jets, etc.

As always, every new module requires a *linkdef.h file. So create
stn example/dict/MyAnalyzer linkdef.h containing:

#ifdef __CINT__

#pragma link off all globals;

#pragma link off all classes;

#pragma link off all functions;

#pragma link C++ nestedclasses;

#pragma link C++ nestedtypedefs;

#pragma link C++ class MyAnalyzer;

#endif

Since this analyzer module will be run separately from MyModule, we will need a new driver
script that loads testrootfile.root. Create the file
/stn example/MyAnalysis/drivers/AnalyzerDriver.C and put in it:

#include <iostream>

TChain* treeChain;

MyAnalyzer* analyzer;

void AnalyzerDriver(int nevents = 10)

{

std::cout << "Begin analyzerDriver" << std::endl;

// The argument must have the name of the TTree instance

// save to the TFile.

treeChain = new TChain("tree");

// Of course, "jnett" is my home directory, you’ll have

// to change that.

treeChain->Add("~jnett80/stn_example/testrootfile.root");

analyzer = new MyAnalyzer();

analyzer->Run(treeChain,nevents);

std::cout << "End analyzerDriver" << std::endl;

}

4.6 Create a Better Ntuple For A More Complex Analysis 39

Now declare our analyzer class in a header file
stn example/MyAnalysis/MyAnalysis/MyAnalyzer.hh

#ifndef _MYANALYZER_HH_

#define _MYANALYZER_HH_

#include <sstream>

#include <string>

#include <iostream>

#include <iomanip>

#include <ostream>

#include <fstream>

#include "TObject.h"

#include "TLorentzVector.h"

#include "TMath.h"

#include "TTree.h"

#include "TChain.h"

#include "TH1D.h"

#include "TFile.h"

#include "MyAnalysis/MyNtuple.hh"

using namespace std;

class TFile;

class TTree;

class MyNtuple;

class MyAnalyzer : public TObject

{

public:

MyAnalyzer();

~MyAnalyzer();

// Declare my output structure. The values

// that will be put into this are the ones we want

// in our final TTree object. For this module, instead

// of saving an ntuple object to a TTree as we did

// with MyModule, we will save this struct to a TTree.

struct MyEventInfo

{

};

// This string will be used to declare the

// variables of the above struct in a TBranch

// of the output TTree object.

static const TString eventInfoDeclare;

void Run(TChain* treeChain, int nevents = 10);

protected:

// These file, tree, and branch objects will be the

// new output just like we have in MyModule

TFile* _processedFile;

TTree* _processedTree;

TBranch* _processedBranch;

// Instantiate my output structure

MyEventInfo eventInfo;

// Analysis functions

40 4 THE FIRST TASKS

void EndAnalyzer();

ClassDef(MyAnalyzer,1)

};

#endif

For the source code of our analyzer module
(stn example/MyAnalysis/src/MyAnalyzer.cc), begin with

#include <iostream>

#include "MyAnalysis/MyAnalyzer.hh"

#include "MyAnalysis/MyHeaderBlock.hh"

#include "MyAnalysis/MyMuon.hh"

#include "MyAnalysis/MyNtuple.hh"

#include "TObject.h"

#include "TObjArray.h"

#include "TLeaf.h"

ClassImp(MyAnalyzer)

using namespace std;

// To be filled with the names of the variables

// that will be in the output. The format follows that

// given in ‘‘Case A’’ on http://root.cern.ch/root/html/TTree.html.

const TString MyAnalyzer::eventInfoDeclare = "";

// Constructor

MyAnalyzer::MyAnalyzer() : TObject()

{

// Make a new TTree for the new results. The new ROOT file

// containing the output is "testProcessedFile.root

_processedTree = 0;

_processedFile = 0;

_processedTree = new TTree("ProcessedTree","My Processed Ntuple");

_processedFile = new TFile("testProcessedFile.root","RECREATE");

_processedBranch = _processedTree->Branch("eventInfo",&eventInfo, eventInfoDeclare);

}

// Destructor

MyAnalyzer::~MyAnalyzer(){}

void MyAnalyzer::Run(TChain* treeChain, int maxEvents)

{

std::cout << " Begin MyAnalyzer::Run" << std::endl;

EndAnalyzer();

std::cout << " End MyAnalyzer::Run" << std::endl;

}

void MyAnalyzer::EndAnalyzer()

{

_processedFile->cd();

_processedTree->Write();

_processedFile->Close();

}

Run the analyzer module with

root -l -q ‘‘MyAnalysis/drivers/AnalyzerDriver.C(10)’’

Let’s put some content in MyAnalyzer. In the header file, change the declared (but still
empty) data structure so that it contains variables for the header info:

4.6 Create a Better Ntuple For A More Complex Analysis 41

struct MyEventInfo

{

Int_t eventNumber;

Int_t runNumber;

Int_t sectionNumber;

Float_t instLum;

};

Along with this, we must change the static string in the source code from const TString

MyAnalyzer::eventInfoDeclare = ‘‘’’; to

static const TString MyAnalyzer::eventInfoDeclare =

"eventNumber/I:"

"runNumber/I:"

"sectionNumber/I:"

"instLum/F";

Now the output TTree contains a branch that has these variables reported. So far, they are
still empty. We now move to MyAnalyzer::Run in the source code to see how to extract
ntuple information from the output of MyModule.

In the following, we access the information in the filled-ntuple and then save it to the struct
declared in the header of the analyzer module. The purpose of individual lines are
commented in the code. So alter MyAnalyzer::Run to look like the following:

void MyAnalyzer::Run(TChain* treeChain, int maxEvents)

{

std::cout << " Begin MyAnalyzer::Run" << std::endl;

// We don’t want to accidentally try accessing more events than what

// were saved to the ntuple in MyModule. Doing so would likely

// result in the dreaded segmentation error.

int nevents = TMath::Min(int(treeChain->GetEntries()),maxEvents);

// Create a new ntuple object whose address will be set to the

// filled ntuple in the input TTree.

MyNtuple* _ntuple = new MyNtuple();

// Setting the address of _ntuple to the ntuple branch of the

// input TTree. Note that this will NOT fill _ntuple with any

// of those values yet.

treeChain->SetBranchAddress("branch",&_ntuple);

// Recall that in MyModule we executed the tree->Fill() command

// at the end of each event. The following loop will cycle

// back over each of these ’fills’.

for(int ievent=0; ievent < nevents; ievent++)

{

// This is the command that fills _ntuple

// with the values of a particular event saved

// to the input TTree.

int exists = treeChain->GetEntry(ievent);

// Retrieve the header block that was saved to the ntuple in MyModule

MyHeaderBlock* _header = _ntuple->NtHeaderBlock();

// Retrieve the values of the header block for this event.

int _eventNumber = _header->EventNumber();

int _runNumber = _header->RunNumber();

int _sectionNumber = _header->SectionNumber();

float _instLum = _header->InstLum();

// Fill these retrieved values into the struct "eventInfo".

42 4 THE FIRST TASKS

eventInfo.eventNumber = _eventNumber;

eventInfo.runNumber = _runNumber;

eventInfo.sectionNumber = _sectionNumber;

eventInfo.instLum = _instLum;

// Fill the output TTree

_processedTree->Fill();

}

EndAnalyzer();

std::cout << " End MyAnalyzer::Run" << std::endl;

}

This should be a sufficient start to constructing an Stntuple-based analysis.

43

5 Common errors

5.1 Changing Code within Stntuple/loop

If for any reason you need to change code within the header file of any module within
Stntuple/Stntuple/loop you must, of course, compile with

gmake Stntuple._loop USESHLIBS=1

However, because of how intertwined these modules are with those in
Stntuple/Stntuple/ana it is possible that you will need to compile that section of
Stntuple as well, even if you haven’t touched it’s modules:

gmake Stntuple._ana USESHLIBS=1

For instance, I discovered this when changing the number of variables in a function of
TStnAna. After compiling TStnAna and my own module I received the following error when
running the module:

dlopen error: /mnt/autofs/misc/nuwm01.home/jnett80/stn_rel/shlib/Linux2_SL-GCC_3_4/

libStntuple_loop.so:

undefined symbol: _ZN10TStnModule5EventEiiRiS0_S0_S0_S0_S0_S0_S0_S0_S0_

R4TH2FR4TH1FS4_S4_S4_S4_S4_S4_S4_S4_S4_S4_S4_S4_S4_

S4_S4_S4_S4_S4_S4_S4_S4_S4_S4_S4_S4_S4_

Load Error: Failed to load Dynamic link library

/mnt/autofs/misc/nuwm01.home/jnett80/stn_rel/shlib/Linux2_SL-GCC_3_4/libStntuple_loop.so

*** Interpreter error recovered ***

root [0]

Processing TriggerAna/scripts/higgs.C(10,10)...

Error: Symbol TStnAna is not defined in current scope

FILE:TriggerAna/scripts/higgs.C LINE:3

Error: Symbol x is not defined in current scope

FILE:TriggerAna/scripts/higgs.C LINE:3

dlopen error: means that a shared library cannot be loaded into ROOT. In this case,
libStntuple loop.so cannot be loaded. This kind of error is then always (as far as I’ve
seen) followed by the statement Load Error: Failed to load Dynamic link library.
Notice that the one clue to the source of the problem is contained withing the “undefined
symbol” ZN10TStnModule5EventEiiRiS0.... I resolved this by first deleting all the
libraries with gmake clean and then recompile everything, including now gmake

Stntuple. ana USESHLIBS=1. Further changes of this sort can avoid the gmake clean

bomb by compiling libStntuple ana.so before attempting to run the module.
I’ve actually encountered this failure-to-load a shared library error for several reasons
(another time was when I mixed up the syntax for the destructor in my TStnModule

module). It is particularly bedeviling because it is not a compilation error; it occurs when
rootlogon.C is attempting to load the necessary shared libraries for the ROOT driver
script. The only clue you get is that there is a problem somewhere within the directory of
the indicated shared library.

5.2 The Missing Separator Error

An often encountered error contains the mystifying statement missing separator.

Stop.. A frequent solution to this is to gmake MyModule.clean to completely clear the
libraries, and then recompile normally gmake MyModule.nobin USESHLIBS=1.

44 5 COMMON ERRORS

5.3 The Problem With Loading libJetUser forRoot.so

When dealing with jets and their energies, a common practice, it is necessary to utilize the
JetUser package. I had a problem loading the shared library libJetUser forRoot.so,
getting a cryptic error when rootlogon.C executes upon entering ROOT:

[jnett80@nuwm08 ~/background_analysis]$ root -l

rootlogon

dlopen error: /mnt/autofs/misc/nuwm01.home/jnett80/background_analysis/shlib/Linux2_SL-GCC_3_4/libJetUser_forRoot.so:

undefined symbol: _ZN15ZMexThrowErrors10takeCareOfERK11ZMexception

Load Error: Failed to load Dynamic link library

/mnt/autofs/misc/nuwm01.home/jnett80/background_analysis/shlib/Linux2_SL-GCC_3_4/libJetUser_forRoot.so

*** Interpreter error recovered ***

It turns out that the problem pertains to the order in which the shared libraries are loaded
into ROOT. In this case, the packages ZMutility and Exceptions must also be utilized and
their shared libraries libZMutility.so and libExceptions.so must be loaded first. Quite
generally, the order of loading shared libraries to ROOT is important. For instance, I find it is
necessary to load libStntuple loop.so before loading libStntuple ana.so.
If JetUser is used, I suggest the following for the rootlogon.C:

{

#include <iomanip.h>

#include <time.h>

//#include <iostream>

std::cout << "rootlogon" << std::endl;

// the line below tells ROOT script compiler

// where to look for the include files

gSystem->SetIncludePath(" -I./include -I$CDFSOFT2_DIR/include");

gSystem->Load("$ROOTSYS/lib/libPhysics.so");

gSystem->Load("$ROOTSYS/lib/libEG.so");

gSystem->Load("$ROOTSYS/lib/libDCache.so");

gSystem->Load("./shlib/$BFARCH/libZMutility.so");

gSystem->Load("./shlib/$BFARCH/libExceptions.so");

gSystem->Load("libsam_cpp_api.so");

gSystem->Load("libdiskcache_samroot.so");

char command[200];

sprintf(command,"%s/Stntuple/scripts/global_init.C",

gSystem->Getenv("CDFSOFT2_DIR"));

gInterpreter->LoadMacro(command);

const char* exec_name = gApplication->Argv(0);

if ((strstr(exec_name,"root.exe") != 0) || (strstr(exec_name,"stnfit.exe") != 0)) {

gSystem->Load("./shlib/$BFARCH/libJetUser_forRoot.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_base.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_obj.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_loop.so");

}

if (strstr(exec_name,"root.exe") != 0) {

gSystem->Load("./shlib/$BFARCH/libStntuple_geom.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_alg.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_ana.so");

gSystem->Load("./shlib/$BFARCH/libStntuple_val.so");

gSystem->Load("./shlib/$BFARCH/libBackgroundAna.so");

}

// print overflows/underflows in the stat box

gStyle->SetOptStat(11111111);

// print fit results in the stat box

5.3 The Problem With Loading libJetUser forRoot.so 45

gStyle->SetOptFit(1110);

// this line reports the process ID which simplifies

// debugging

TAuthenticate::SetGlobalUser(gSystem->Getenv("USER"));

gInterpreter->ProcessLine(".! ps | grep root");

std::cout << "rootlogon.C finished" << std::endl;

}

	Disclaimer
	The First Compilation
	Creating a New Release and its Directories
	The Source Code and Header Files
	MyModule::BeginJob()
	MyModule::BeginRun()

	Symbolic Linking and the Header
	MyModule_linkdef.h
	The GNUmakefile files
	The empty .refresh file
	Compile

	The First Run
	rootlogon.C and Loading MyAnalysis' shared library
	Retriving a set of test data from SAM/Accessing SAM data directly
	The Driver Script
	Run

	The First Tasks
	ClassDef and ClassImp: Making Your Class a ROOT Class
	Declaring Static Data Members
	Access The Data Blocks
	Make and Fill a Histogram
	Create a Basic Ntuple
	Create a Better Ntuple For A More Complex Analysis
	Storing an Object to an Ntuple
	Storing an Array of Objects in an Ntuple
	Building an Analyzer Module for an Ntuple

	Common errors
	Changing Code within Stntuple/loop
	The Missing Separator Error
	The Problem With Loading libJetUser_forRoot.so

